Control-A-Video: Controllable Text-to-Video Generation with Diffusion Models
Recent advancements in diffusion models have unlocked unprecedented abilities in visual creation. However, current text-to-video generation models struggle with the trade-off among movement range, action coherence and object consistency. To mitigate this issue, we present a controllable text-to-video (T2V) diffusion model, called Control-A-Video, capable of maintaining consistency while customizable video synthesis. Based on a pre-trained conditional text-to-image (T2I) diffusion model, our model aims to generate videos conditioned on a sequence of control signals, such as edge or depth maps. For the purpose of improving object consistency, Control-A-Video integrates motion priors and content priors into video generation. We propose two motion-adaptive noise initialization strategies, which are based on pixel residual and optical flow, to introduce motion priors from input videos, producing more coherent videos. Moreover, a first-frame conditioned controller is proposed to generate videos from content priors of the first frame, which facilitates the semantic alignment with text and allows longer video generation in an auto-regressive manner. With the proposed architecture and strategies, our model achieves resource-efficient convergence and generate consistent and coherent videos with fine-grained control. Extensive experiments demonstrate its success in various video generative tasks such as video editing and video style transfer, outperforming previous methods in terms of consistency and quality.