UniHair: Towards Unified 3D Hair Reconstruction from Single-View Portraits

Single-view 3D hair reconstruction is challenging, due to the wide range of shape variations among diverse hairstyles. Current state-of-the-art methods are specialized in recovering un-braided 3D hairs and often take braided styles as their failure cases, because of the inherent difficulty to define priors for complex hairstyles, whether rule-based or data-based. We propose a novel strategy to enable single-view 3D reconstruction for a variety of hair types via a unified pipeline. To achieve this, we first collect a large-scale synthetic multi-view hair dataset SynMvHair with diverse 3D hair in both braided and un-braided styles, and learn two diffusion priors specialized on hair. Then we optimize 3D Gaussian-based hair from the priors with two specially designed modules, i.e. view-wise and pixel-wise Gaussian refinement. Our experiments demonstrate that reconstructing braided and un-braided 3D hair from single-view images via a unified approach is possible and our method achieves the state-of-the-art performance in recovering complex hairstyles. It is worth to mention that our method shows good generalization ability to real images, although it learns hair priors from synthetic data.

Subscribe to our newsletter

Receive new cutting edge AI tools directly into your inbox – every week!

by @dreamingtulpa