You Only Sample Once: Taming One-Step Text-to-Image Synthesis by Self-Cooperative Diffusion GANs

19.03.24 · Text-to-Image
We introduce YOSO, a novel generative model designed for rapid, scalable, and high-fidelity one-step image synthesis. YOSO integrates the diffusion process with GANs to achieve the best of two worlds. Specifically, we smooth the distribution by the denoising generator itself, performing self-cooperative learning. We show that our method can serve as a one-step generation model training from scratch with competitive performance. Moreover, we show that our method can be extended to finetune pre-trained text-to-image diffusion for high-quality one-step text-to-image synthesis even with LoRA fine-tuning. In particular, we provide the first diffusion transformer that can generate images in one step trained on 512 resolution, with the capability of adapting to 1024 resolution without extra explicit training. Our code is provided at https://github.com/Luo-Yihong/YOSO

Subscribe to our newsletter

Receive new cutting edge AI tools directly into your inbox – every week!

by @dreamingtulpa